

G209142

ELMDENE INTERNATIONAL LIMITED 3 KEEL CLOSE INTERCHANGE PARK PORTSMOUTH HAMPSHIRE

TEL: +44 (0) 23 9269 6638 FAX: +44 (0) 23 9266 0483 www.elmdene.co.uk

2402STE Intelligent Switch Mode Power Supply: EN54-4 Certified

27.6Vdc 2A PSU with Intelligent Battery Charging, Monitoring and Remote Fault Signalling

PO₃ 5QD, UK

The 2402STE is a fully featured EN54-4 approved power supply ideal for use in Fire Systems and Access control applications. Its regulated 27.6V dc output will supply up to 2A continuous into the load, in addition to providing up to 0.8A for charging the standby batteries. The power supply output features electronic short circuit protection under both mains and standby battery operation. Maximum battery life is assured through continuous active battery monitoring and the use of a three stage charger, comprising bulk, absorb and temperature compensated final float phase depending upon battery condition. Deep discharge protection prevents premature battery failure when operating from standby for extended periods. Two sets of volt free solid state relay fault output signal (i) loss of mains and (ii) battery fault, charger fault and loss of output.

- Certified by VdS to EN54-4:1997 +A1: 2002 + A2: 2006
- 2A current to load at 27.6V dc nominal regulated output
- Electronic overload protection shuts down output until overload or short circuit is removed
- Battery Monitor detects battery missing, low battery, short-circuit or reverse connection
- Battery charging circuit is energised only when a battery is correctly connected and the battery voltage is greater than 14V
- No loss of output during automatic connection of battery to load on loss of mains
- Deep discharge protection disconnects battery from load when battery voltage falls to 21V
- Automatic start-up on battery only
- Fault indicator LED (Red) flashes on detection of output fault, battery fault, charger fault and mains failure
- Mains indicator LED (green) showing mains present

Compliance

This power supply unit complies with the following European Directives:

Low Voltage 2006/95/EC EMC 2004/108/EC WEEE 2002/96/EC RoHs 2002/95/EC CPR305/2011 EU

Specification

Input

Voltage 93Vac minimum, 264Vac maximum

Frequency 45Hz - 65Hz

1.25A maximum for a 2A load and 0.8A battery charging 30A maximum @ 25 $^{\circ}$ C, 110Vac for 10ms Current

Inrush current

Mains input fuse T3.15A 20mm, 250Vac HBC

Output

Voltage 26.0Vdc - 28vdc on mains power / 18Vdc - 26Vdc on battery standby

Load Current 0 - 2A

100mV max over full rated mains voltage Ripple

Load output fuse T2A 20mm, 250Vac glass

Electronic shutdown at 4.5A until overload or short circuit removed Overload

Standby Battery

Battery Capacity 2 x 17Ah maximum (e.g. Yuasa NP17-12) series connected

Battery fuse protection T2A 20mm glass

Constant current (0.8A) bulk charging to 80% within 24 hours, float charging to 100% within 48 **Battery Charging**

hours

Low Battery Threshold Voltage 23V nominal

Battery disconnect at 21V nominal Deep discharge protection

Quiescent current - no load 25mA nominal Quiescent current - battery cut off <70µA

Mechanical

1.2mm steel, white powder coated Case material 400mm W x 420mm H x 80mm D Size Weight 6.2kg (excluding batteries)

Environmental

-10 to +40 °C (operating) 95% RH non-condensing Temperature

-20 to +80 °C (storage)

Connections

O/P + and -Voltage output to load

PSU Fault Solid State Relay output contacts **EPS** fault Solid State Relay output contacts

Temp sensor Connection to battery temperature sensor

BATT + and -Connections to standby batteries

FAN + and -No Connection

Features

Loss of Mains and Brown-out compensation

If the mains input has been lost for greater than 10s, a Loss of Mains condition is detected, an EPS Fault is signalled and the green Mains LED is extinguished. Short duration mains "brown-out" conditions are not signalled thus reducing nuisance alarms. The red Fault LED will show a heart-beat pulse indicating that the PSU is operating correctly in standby mode.

Standby Operation

When the mains input is lost, the power supply will automatically switch to the standby batteries and provide uninterrupted power the connected load whilst there is capacity in the standby batteries. The front panel Fault LED is pulsed periodically to indicate that the PSU is healthy and operating in standby mode.

During standby operation, the standby battery voltage is continually monitored. Once this drops below the Low Battery Voltage threshold (approximately 23V), a PSU Fault signal is generated and a Low Battery condition is signalled on the front panel LED.

Battery Management

The standby batteries are tested regularly. If a battery becomes disconnected, a PSU Fault signal will be generated within 20s of the disconnection.

If the impedance of the battery circuit connections increases above $500m\Omega$, for example due to corrosion or damage to the cabling, a PSU Fault signal will be generated within 60 minutes.

If the battery is unable to supply significant current to the load, for example due to cell degradation, a PSU Fault signal will be generated within 24 hours.

Battery Charging

The standby batteries are charged automatically when the mains is present. The PSU uses a fast bulk charge regime to quickly recharge the batteries to approximately 80% capacity followed by a reduced charging current to reach full capacity. The batteries are held at full capacity using a temperature compensated float regime. The battery temperature is measured at its terminals using a special sensing probe. An extended probe may be fitted for use with an external standby battery pack.

Note: if the batteries are disconnected the battery charger is switched off and there will be NO measurable voltage at the BATT terminals.

Battery Auto-Start

The power supply will self-start if a set of charged standby batteries are connected without any mains present. An EPS Fault signal will be generated under this condition.

Note: a pause of 5s must be observed between repeated battery connections and disconnections to guarantee an auto-start.

Signalling

Fault Outputs: 100mA @ 60Vdc solid state relay (Open indicates fault condition)

EPS Fault	PSU Fault	Condition	Possible Cause	Action
CLOSED	CLOSED	Normal operation	Mains present Battery fully charged	None
OPEN	CLOSED	Standby Mode	Mains lost Battery driving load	Investigate loss of mains
CLOSED	OPEN	Fault Present	Blown fuses Battery fault Overload Internal fault	Investigate fault source using diagnostic LED Rectify fault where possible
OPEN	OPEN	PSU Shutdown	Mains lost Standby battery exhausted	Restore mains as soon as possible

Local Indicators – front panel

Red LED Fault	Green LED Mains	Condition	Possible Cause	Action
OFF	On	Normal operation	Mains present Battery fully charged	None
FLASH CONTINUOUS	On or Off	Fault	Blown fuses Battery fault Overload Internal fault	Contact service engineer
1 Pulse	OFF	Standby Mode	Mains lost Battery driving load	Investigate loss of mains

Diagnostic Indicator - internal

Red LED Diagnostic	Green LED Mains	Condition	Possible Cause	Action
OFF	On	Normal operation	Mains present Battery fully charged	None
OFF	Off	Standby Operation	Mains Lost. No faults present Battery driving load	Investigate loss of mains
On Continuous	On or Off	Internal Fault	Software fault detected PSU running in Safe Mode	Return to manufacturer
FLASH CONTINUOUS	On or OFF	No output	Output fuse blown Output overload Output short circuit	Check and replace output fuse Disconnect output load and test load
1 Pulse	On	Battery Charging	No faults active Battery charging normally but < 90% of full charge	None
2 Pulses	On	No Battery	Battery disconnected Battery fuse blown Battery heavily discharged	Check battery connections Check and replace battery fuse Check battery terminal voltage and replace if battery aged
	OFF	Low Battery Volts	Standby Mode Battery almost discharged	Restore mains as soon as possible
3 Pulses	On or OFF	Battery Fault	High impedance in battery connection Battery internal fault	Check battery connections for damage e.g. corrosion. Replace battery if aged
4 Pulses	On or Off	Charger Fault	Internal failure of battery charger	Return to manufacturer
5 Pulses	ON or OFF Battery Temperature disconnected or dama		Battery temperature monitor disconnected or damaged PSU running in Safe Mode	Check temperature sensor connections and condition of sensor and cable Replace if suspect

Installation

This unit is only suitable for installation as permanently connected equipment. The PSU is NOT SUITABLE for external installation.

This unit must be fed from a mains power source having a separate (approved) disconnect device and fitted with a fuse or other over-current protection device rated at 3A maximum. Ensure that the disconnect device used has appropriate earth fault protection to the applicable standard.

Where the PSU is used to provide power to a fire alarm circuit, the mains isolation and disconnect device should be provided solely for this purpose and be suitably marked "FIRE ALARM – DO NOT TURN OFF". All cabling should meet national and local fire system installation regulations, e.g. FP200 type cable for high integrity installations.

Where the PSU is used for other applications, it should be installed according to all relevant safety regulations applicable to that application.

Where the PSU Fault and EPS Fault outputs are used, they should only be connected to circuits having voltages less than 60V dc.

Cable Sizing

- Mains input cable must be to the applicable standard with a 3A or greater current capacity, i.e. 0.5mm² nominal conductor area, having a minimum operating voltage of 300/500 Vac.
- 2) The low voltage output cable must be sized to carry the rated load current to the devices connected to the PSU.
- 3) Mains input and low voltage output cables should be routed to use different entry / exit holes in the case. Bushes should be used to protect cable sheaths from chafing. Ensure that these bushings are correctly sized (i.e. close fitting with respect to cable sizing). Note that the bushes should meet a minimum flammability specification of UL94 HB.
- 4) All cabling should be securely fastened in position using a cable tie through the saddles provided.

Mounting

- 5) Fix to wall or other support structure in correct orientation i.e. with hinge on left hand side, using screws of sufficient size and length through the mounting holes.
- 6) PSU should be mounted no further than 10cm from the control and indicating equipment, close coupled by conduit.
- 7) Knock-outs are provided in the case for mating with external trunking or conduit.
- 8) Ensure that all unused holes (on the rear of the case) are sealed to prevent the ingress of damp and dust.

Commissioning

Mains Power Up

- With no external connections made to the PSU, connect the mains input wires to the terminal block, ensuring that the mains isolator (disconnect device) is open. Fasten wiring in place with cable tie to saddle. Note: Equipment must be earthed.
- 2) Apply mains input. Ensure that the green Mains LED illuminates and that the red Fault LED flashes after approximately 20s (indicating a disconnected battery).
- 3) Disconnect the mains power.

Load Output and Remote Signalling

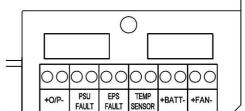
- Connect the EPS and PSU Fault outputs to the appropriate inputs of control equipment if remote fault monitoring is required.
- 5) Loop the load (output) wiring through the supplied ferrite EMC suppressor as shown in Figure. 1. Cable tie to saddle provided (adjacent to exit hole).

Figure 1 - Ferrite EMC suppressor

- Re-apply mains. Verify that the green Mains LED illuminates and the red Fault LED flashes after approximately 20s (disconnected battery).
- 7) If connected, verify that the EPS Fault monitor shows a *closed* contact and the PSU Fault monitor shows an *open* contact.
- 8) Perform a full functional test of system including full alarm condition.

Standby Battery

- Mount two 12V 17Ah batteries in lower part of enclosure.
- 10) Connect the two 12V standby batteries in series using the single cable provided. Connect the *negative* of one battery to the *positive* of the other. DO NOT CONNECT the other two battery terminals to each other.
- 11) Connect the free Positive and Negative terminals of the batteries to the PCB terminals Batt+ and Batt using the cables provided. See Figure 2.
- 12) Ensure the temperature sensor and battery connections are made according to figure 2.
- 13) Verify that the red Fault LED stops flashing after about 20s (battery connection detected). Verify that the remote PSU Fault monitor shows a *closed* contact.
- 14) Disconnect the mains power. Verify that the green Mains LED extinguishes and the red Fault LED starts to pulse (indicating that the PSU is running from its standby batteries).
- 15) If connected, verify that the EPS Fault monitor shows an open contact and the PSU Fault monitor shows a closed contact.
- 16) Perform a full functional test of system including full alarm condition. Verify that the standby batteries can support the system load. Note: ensure batteries have sufficient charge.


Final

- 17) Reconnect the mains. Verify that the green Mains LED illuminates and the red Fault LED extinguishes.
- 18) If connected, verify that the EPS Fault monitor shows a closed contact and the PSU Fault monitor shows a closed contact.
- 19) Close cover and secure using fastening screws provided.

Operating Instructions

This unit is intended for use by Service Personnel only. There are NO USER SERVICEABLE parts inside.

The green Mains LED will be illuminated whilst the mains supply is present. In the event of a failure, the red Fault LED will flash and the solid state remote fault output contacts will open.

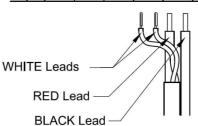


Figure 2 – Connection of battery leads and temp sensor to terminal block.

Maintenance

There is no regular maintenance required of the PSU as the microcontroller performs regular health checks of the battery and output voltage. However, reference should be made to the battery manufacturer's documentation to determine typical / expected battery life with a view to periodic replacement of the battery.

If the output of the PSU fails the cause of the failure should be investigated e.g. short circuit load, connection of a deeply discharged battery. The fault should be rectified before restoring power to the PSU. The following fuses may need to be replaced. Ensure the correct fuse rating and type is used

Load Output Fuse T2A 20mm, 250Vac glass Internal Mains Fuse T3.15A 20mm, 250Vac HBC Battery Fuse T2A 20mm, 250Vac glass

CAUTION

Risk of explosion if battery is replaced by an incorrect type. Dispose of used batteries according to the battery manufacturer's instructions and all local and national regulations

The packaging supplied with this product may be recycled. Please dispose of packaging accordingly.

Specifications subject to change without notice.

© 2013 Elmdene International Ltd

DECLARATION OF PERFORMANCE

DoP2013/0003

According to the Construction Products Regulation EU no. 305/20011

1	Unique Identification code of the product	2402STE
2	Type, batch or serial number or any other element	Products are provided a batch manufacturing code
	allowing identification of the construction product	based on date format
3	Intended use or uses of the construction product	Battery backed up Power supply for Fire Detection,
		signaling and indication equipment
4	Name, registered trade name or registered trade mark	Elmdene International Limited
	and contact address of the manufacturer	3 Keel Close, Interchange Park, Portsmouth, PO3 5QD, UK
5	Where applicable, name and contact address of the authorised representative	Not applicable
6	System or systems of assessment and verification of constancy of performance	System 1 testing
7	Name and Identification of notified body	VDS CE 0786 performed type testing and the initial
		inspection of the manufacturing plant and factory
		production control
	Date of compliance and continuing approval	26 th June 2009
	Under System	Level 1 - Factory Production Control
	CPD EC Certificate	0786- CPD- 20787
8	In case of declaration of performance concerning a	Not applicable.
	construction product for which European Technical	
	Assessment has been issued	

9. Declared performance

Essential Characteristics	Performance	Standard
Performance of Power Suppy	Pass	EN 54-4:1997 + A1:2002 + A2:2006
Operational reliability	Pass	EN 54-4:1997 + A1:2002 + A2:2006
Durability of operational reliability: temperature resistance	Pass	EN 54-4:1997 + A1:2002 + A2:2006
Durability of operational reliability: vibration resistance	Pass	EN 54-4:1997 + A1:2002 + A2:2006
Durability of operational reliability: electrical stability	Pass	EN 54-4:1997 + A1:2002 + A2:2006
Durability of operational reliability: humidity resistance	Pass	EN 54-4:1997 + A1:2002 + A2:2006

10. The performance of the Product Identified in (1), (2) above, is in conformity with the declared performance in (9).

This declaration of Performance is issued under the sole responsibility of the manufacturer identified in (4)

For and on behalf of Elmdene International Ltd

Hugh Devereux - Technical Director

4 Devereus

Date: 24th April 2013

Portsmouth - United Kingdom